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Abstract

We derived a simple model for the prediction of blood—brain barrier penetration using three descriptors. The
model contains the calculated octanol-water partition coefficient, the number of hydrogen-bond acceptors in an
aqueous medium and the polar surface area. It was validated using an extensive dataset, comprising 100 diverse drug
molecules. The descriptors are easily calculated and the model is suitable for the rapid prediction of the blood-brain
barrier partitioning of drugs. © 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

The knowledge of the penetration of drugs
through the blood-brain barrier (BBB) is central
to the design of new central nervous system
(CNS) active drugs and in improving the side
effect profile of drugs with peripheral activity. The
prediction of this property is important, as the
experimental determination of BBB penetration is
difficult and costly. In addition, a rapid method
for making decisions is required for scoring or
prioritizing large combinatorial databases or the
solutions from de novo methods.

Several attempts to correlate BBB transport
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with physico—chemical parameters, have been re-
cently reviewed (Waterbeemd et al., 1998). It was
found that the octanol-water partition coefficient
(log P) is an important factor, although in itself it
correlates poorly with log BB. In addition to
log P, the importance of a molecular size descrip-
tor has been shown (Levin, 1980; Kaliszan and
Markuszewski 1996; Salminen et al., 1997), as
well as the necessity of incorporating a descriptor
relating to hydrogen bond formation (Abraham et
al., 1994; Waterbeemd et al. 1998). Unfortunately,
these earlier models were based on small datasets
and were not validated using an external predic-
tion set. On a larger dataset, Lombardo estab-
lished a correlation between log BB and the
solvation free energy (Lombardo et al., 1996).
Norinder et al. obtained a 3-component PLS
model for a similar set of compounds, using prin-
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cipal components based on 14 descriptors, includ-
ing quantum chemical ones (Norinder et al.,
1998). More recently, Luco published a PLS
model for the most extensive dataset to date that
included 100 compounds, using three principal
components based on 25 descriptors (Luco, 1999).

In summary, the models reported in the litera-
ture are either insufficiently predictive (Levin,
1980; Kaliszan and Markuszewski, 1996; Salmi-
nen et al., 1997) or contain the principal compo-
nents of numerous physicochemical descriptors
(Norinder et al., 1998; Luco, 1999) that cannot be
easily and rapidly calculated for an arbitrary com-
pound. Our aim in this study was to derive a
simple model based on all available experimental
data but containing only a few relevant physico—
chemical properties that can be calculated rapidly
for large databases and for a wide range of
compounds.

2. Methods

The dataset of 100 compounds and their corre-
sponding biological activities was taken from the
literature (Luco, 1999). The division of com-
pounds into a training set (61 compounds) and
two prediction sets (14 and 25 compounds) was
also taken from the same source (Luco, 1999).
The modeling work and the principle component
regression (PCR) fits were performed with the
Molecular Operating Environment (MOE) pro-
gram (MOE, 1999). In case of our three-descrip-
tor model, these PCR fits were found to be
equivalent to multiple linear regression (MLR)
models. These models, derived on the training set,
were cross-validated using the leave-one-out pro-
cedure and then tested on the external prediction
sets. The applied conformations were produced
using a high quality molecular builder in MOE
and optimized using the Merck force field (Hal-
gren, 1996), applying the appropriate force field
charges (Halgren, 1996). In order to check the
quality of these vacuum conformations, a limited
conformational search in vacuum was undertaken
with the Random Incremental Pulse Search
(RIPS) algorithm (Ferguson and Raber, 1989). In
these random searches the first 100 conformers

were produced. In all cases, the conformations
from the builder were low energy ones, within 2
kcal/mol of the global energy minimum. There-
fore, conformational searches were deemed un-
necessary for the purposes of this QSAR.

The logP and logD values were calculated
using the ACD suite (ACD/Labs, 1998). The
number of hydrogen-bond acceptors was obtained
using the Patty rules that take into account the
solvation state of functional groups (Bush and
Sheridan, 1993). The polar surface area was esti-
mated from the solvent-exposed area of the
molecule (MOE, 1999) assuming a spherical sol-
vent molecule with a radius of 1.4 A and consider-
ing only those parts of the surface with the
absolute value of the partial charge greater than
0.2.

3. Results

Models involving only lipophilicity and a
molecular size descriptor (Levin, 1980; Kaliszan
and Markuszewski, 1996) have been shown to
break down when tested on an alternative dataset
(Salminen et al., 1997). For example, a direct
fitting of log P and molecular mass or volume
using 26 compounds produced an r? of approxi-
mately 0.3. On the other hand, according to the
work done in the present study, this latter model
(Salminen et al., 1997), which was based on log P,
I; (where I; is an indicator variable for the pres-
ence of amino and carboxylic groups) and van der
Waals volume predicted log BB inadequately for
compounds in the Luco dataset (Luco, 1999).
Although fitting the model of Salminen et al. on
our training set produced a reasonable correlation
(r?=0.77, rmse=0.39), this model predicted
log BB poorly for molecules in our test set 1
(r?=0.26, rmse = 0.88). Hence, it was necessary
to search for a more general model.

The importance of including log P, a hydrogen-
bond descriptor and the polar surface area to
model the penetration of drugs across the blood-
brain barrier has been documented (Waterbeemd
et al., 1998). The simplest model obtained in the
present work, derived for 61 compounds, was a
three-descriptor model using the calculated oc-
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tanol-water partition coefficient (log P) of the
compound, the polar surface area (4,.) and the
number of hydrogen-bond acceptors in an
aqueous medium (7,...,). The regression model
derived for the training set was:

log BB = 0.4275 — 0.3873 10 e, + 0.1092 log P
—0.0017 A, (1)

(n=61, r>=0.730, ¢>=0.688, rmse=0.424,
F=151, P<0.001).

The properties of our three-descriptor model
are compared to those of the 25-descriptor, 3
PCA-component PLS model (Luco, 1999) in
Table 1. Our three-descriptor model has only
slightly worse performance for the training set
and the two prediction sets. The observed and
calculated activities and the descriptors are pre-
sented in Table 2 for the training set and Table 3
for the two prediction sets. The overall fit is
presented graphically for the three datasets in Fig.
1.

The statistics presented above do not consider
any molecules in the dataset as outliers. Obvi-
ously, removing outliers from the prediction sets
greatly improves the apparent performance of the

Table 1
Properties of the statistical model®

Present work  Reference (Luco, 1999)

Training set (n = 61)

r? 0.730 0.764
rmse 0.424 0.399
q> 0.688

(leave-one-out)

Prediction set 1 (n=14)

r? 0.576 0.651
rmse 0.628 0.500
Prediction set 2 (n = 25)

r? 0.616 0.577
rmse 0.789 0.522

*The statistics were obtained for both models with no
molecules being considered as outliers. The statistics for the
reference (Luco, 1999) were calculated using the predicted and
experimental values given there. The root mean square error
was obtained by dividing the residual sum of squares by n (i.e.
ignoring the degrees of freedom) as was done in all of the
quoted references.

model. For example, the removal of molecules 62
and 63 from prediction set 1 (the same outliers
that were removed in the reference (Luco, 1999))
improves the > value from 0.58 to 0.86. Similarly,
removing the two worst outliers from the training
set, compounds 30 and 61 (cf. three outliers re-
moved (Luco, 1999)) improves the fit considerably
(n=759, r?>=0.795, rmse = 0.346). However, lack-
ing specific information to explain why these
molecules behave as outliers, their exclusion from
the model was not justified in the present study.
Furthermore, the removal of these two com-
pounds had no major effect on the predictions
made for either test set.

4. Discussion

The model described above is robust and was
obtained without the omission of any points as
outliers. Nevertheless, it is important to check the
validity and uniqueness of the descriptors in the
model. This was achieved in three ways: studying
the interdependence of the descriptors, determin-
ing the effect of removing any of them and
searching for possible descriptors to replace them.

The independence of the applied descriptors
was checked by calculating the correlation matrix
of the parameters in the final model. The result is
displayed in Table 4. It can be seen from Table 4
that some correlation between the polar surface
area and the number of hydrogen bond acceptors
exists (#*>=0.30), as both depend on the size of
the molecule. However, this correlation is far less
than the r>=0.8 that would be required for the
variables to substitute for each other in the regres-
sion equation (Martin, 1978). Therefore we can
treat the three descriptors as being largely inde-
pendent in the model. Not too surprisingly, the
removal of any of the descriptors significantly
reduces the quality of the fit, to an 72 below 0.5
from 0.73 in the training set.

A systematic study showed that it is possible to
replace some of the descriptors used in Eq. (1)
without significantly reducing the predictive
power of the model, provided the replacement
descriptors are highly correlated with the original
ones. The ease of calculation may be a rationale
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Table 2

Experimental and calculated blood-brain barrier penetration (log BB) and the computed descriptors * for the training set molecules
Compound® Log BB exp.© Log BB calculated Mace.soly log P Apor

1 (Cimetidine) —1.42 —1.52 4 0.36 254.39
2 —0.04 —0.59 2 0.39 164.06
3 (Lupitidine) —1.06 —1.32 4 1.94 236.44
4 (Pyrilamine) 0.49 —0.16 2 3.26 98.36
5 (Imipramine) 0.83 0.82 0 4.47 53.36
6 (Tiotidine) —0.82 —1.75 4 —0.08 361.52
7 —0.67 —0.70 3 3.30 191.40
8 —0.66 —0.83 3 2.27 198.63
9 —0.12 —0.57 3 4.26 176.87
10 —0.18 —0.43 2 1.69 153.77
11 —1.15 —0.68 2 0.41 219.73
12 —1.57 —1.04 3 0.55 212.14
13 —1.54 —1.58 4 0.74 312.85
14 —0.27 —0.70 3 3.25 186.74
15 —0.28 —0.76 3 2.90 197.93
16 —0.46 —0.32 2 2.08 112.89
17 —0.24 —0.04 2 3.99 72.14
18 —0.02 —0.20 2 2.82 90.65
19 0.69 —0.10 2 3.25 62.35
20 0.44 —0.04 2 371 56.05
21 (Zolantidine) 0.14 0.13 2 5.36 62.31
22 0.22 —0.36 3 4.77 83.17
23 (Icotidine) —2.00 —1.55 5 227 167.52
24 —1.30 —0.66 3 4.20 220.88
25 (Clonidine) 0.11 0.07 1 1.54 78.60
26 —1.12 —0.86 3 2.69 242.44
27 —0.73 —0.61 3 4.68 223.23
28 —1.17 —1.03 3 0.72 218.00
29 (Ranitidine) —1.23 —1.04 3 1.31 262.60
30 —2.15 —0.77 3 2.27 162.81
31 (Temelastine) —1.88 —0.99 4 3.41 137.14
32 (Butanone) —0.08 0.00 1 0.37 44.04
33 (Benzene) 0.37 0.67 0 2.22 0.00
34 (3-methylpentane) 1.01 0.84 0 3.76 0.00
35 (3-methylhexane) 0.90 0.89 0 4.29 0.00
36 (2-propanol) —0.15 —0.03 1 0.16 47.98
37 (2-methylpropanol) —0.17 0.02 1 0.69 53.27
38 (2-methylpentane) 0.97 0.84 0 3.76 0.00
39 (2,2-dimethylbutane) 1.04 0.82 0 3.58 0.00
40 (1,1,1 trifluro-2-chloroethane) 0.08 0.23 0 1.11 187.63
41 (1,1,1 trichlorethane) 0.40 0.34 0 2.10 183.30
42 (diethyl ether) 0.00 0.10 1 0.98 28.56
43 (R-enflurane) 0.24 —0.16 1 2.10 249.63
44 (Ethanol) —0.16 —0.09 1 —0.19 65.06
45 (Fluroxene) 0.13 —0.07 1 1.49 159.55
46 (R-halothane) 0.35 0.26 0 2.30 242.72
47 (Heptane) 0.81 0.91 0 4.47 0.00
48 (Hexane) 0.80 0.86 0 3.94 0.00
49 (R-isoflurane) 0.42 —0.04 1 2.79 225.88
50 (methylcyclopentane) 0.93 0.79 0 331 0.00
51 (Pentane) 0.76 0.80 0 3.41 0.00
52 (Propanol) —0.16 —0.03 1 0.34 61.64
53 (Propanone) —0.15 —0.06 1 —0.16 49.19
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Table 2 (Continued)

Compound® Log BB exp.© Log BB calculated Mycesoly log P Apor

54 (R-teflurane) 0.27 0.25 0 1.95 225.83
55 (Toluene) 0.37 0.72 0 2.68 0.00
56 (Trichloroethene) 0.34 0.66 0 2.26 7.75
57 (Acetylsalicylic acid) —0.50 —1.20 4 1.19 119.86
58 (Valproic acid) —0.22 —0.20 2 2.72 84.58
59 (Salicylic acid) —1.10 —0.72 3 2.06 123.88
60 (Acetaminophen) —0.31 —0.49 2 0.34 104.52
61 (Chlorambucil) —1.70 —0.40 2 3.70 264.18

#The applied descriptors were the following: n,.. s, is the number of solvated hydrogen-bond acceptors, log P is the calculated
octanol-water partition coefficient and 4, is the polar surface area. See text for further details.

® The structure and numbering of the molecules, corresponds to that in the reference (Luco, 1999).

¢ Experimental log BB values taken from the reference (Luco, 1999).

for such replacement. The substitution of polar
surface area with water-accessible surface area or
even the total number of single bonds in the
molecule leads to a moderate ( < 10%) increase of
the rmse in the fit and predictions. The replace-
ment of log P with log D (at pH 7) leaves the fit
largely unchanged, presumably because log D is
highly correlated with logP and n,. . (> =
0.70). No replacement descriptor could be found
for the number of solvated hydrogen-bond accep-
tors and hence this descriptor is both essential and
unique to this model. Replacing 7, ., With the
number of hydrogen-bond acceptors for an iso-
lated ligand produced only poor models. (Fitting
the parameters log P, 4, and n,.. vacyum ON the
training set produced r? = 0.49, rmse = 0.59).

An intriguing result of the above QSAR analy-
sis is the fact that the number of hydrogen-bond
donors (either solvated or vacuum) had little im-
pact on the statistics of the model. This is clearly
not the result of underrepresentation of molecules
with hydrogen bond donor groups in the dataset.
It may be partly due to the fact that a large
proportion of the donor groups are already ac-
counted for in n,. ., namely those that can be
simultaneously acceptors and donors such as OH,
those that can tautomerize to act as either, such
as the nitrogen in imidazole, or have pK, values
near neutrality, such as the nitrogen in aromatic
sulphonamides (Bush and Sheridan, 1993). Re-
cently it has been shown from Monte-Carlo simu-
lations that hydrogen bond donors have no effect

on octanol-water partitioning (Duffy and Jor-
gensen, 2000). In that work, this observation was
explained by noting that the number of hydrogen
bonds donated by solutes is the same in water and
alcohol solvents, while the hydrogen-bond accep-
tor sites are more saturated in water. It appears
likely that similar conclusions apply for blood—
brain barrier penetration, which involves parti-
tioning between the aqueous and the lipid phase.
It must be noted that some non-linearity can be
observed in the model for molecules with
log BB < — 1. Molecules in this range are likely
to build a number of strong hydrogen bonds and
it is feasible that the neglect of H-bond donors is
no longer justifiable in this range. However,
molecules that fall in this range do not readily
cross the blood-brain barrier and the model in
this work clearly identifies them as such.

In order to assess the validity of the model, it is
necessary to discuss the sources of errors. The
statistical errors in the fit arise from three sources:
the possible inadequacy of the model, inaccuracy
of the experimental data and errors in the calcu-
lated parameters. The experimental log BB values
were measured using different experimental proce-
dures and many of them have large inter-animal
variations (Bonate, 1995). In addition, the com-
parability of results obtained with different exper-
imental techniques has not been established
(Bonate, 1995). A further uncertainty arises due
to the involvement of different transport mecha-
nisms and binding to plasma proteins (Bonate,
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Table 3
Experimental and calculated blood-brain barrier penetration and the computed descriptors * for the test set molecules

Test set 1

Compound® Log BB exp.° Log BB calculated Nacesolv LogP Apor
62 —1.30 —0.20 2.00 2.29 61.66
63 —1.40 —0.50 2.00 0.10 95.10
64 —0.43 —0.28 2.00 2.95 146.35
65 0.25 0.22 1.00 3.31 103.48
66 —0.30 —0.07 1.00 0.10 68.65
67 —0.06 0.01 1.00 0.76 62.61
68 —0.42 —0.44 2.00 0.53 88.86
69 —0.16 —0.39 2.00 1.73 136.52
70 (Carbamazepine) 0.00 0.18 1.00 2.67 89.59
71 (Carbamazepine epoxide) —0.34 —0.46 2.00 0.69 110.72
72 0.30 —1.63 5.00 0.90 127.09
73 —1.34 —2.19 6.00 —0.08 165.84
74 —1.82 —2.74 7.00 —0.73 216.47
75 (Amitriptyline) 0.89 1.00 0.00 6.14 55.08
Test set 2%

76 (Theophylline) —0.29 —1.43 4.00 0.05 180.69
77 (Caffeine) —0.06 —1.03 3.00 —0.07 168.27
78 (Antipyrine) —0.10 —0.03 1.00 0.27 58.32
79 (Ibuprofen) —0.18 —0.09 2.00 3.72 87.87
80 (Codeine) 0.55 —0.75 3.00 1.83 126.67
81 (Pentobarbital) 0.12 —0.77 3.00 2.09 150.68
82 (Alprazolam) 0.04 —0.58 3.00 2.50 70.30
83 (Indomethacin) —1.26 —1.07 4.00 3.10 165.64
84 (Oxazepam) 0.61 —0.70 3.00 2.31 124.45
85 (Hydroxyzine) 0.39 —0.20 2.00 3.00 104.85
86 (Desipramine) 1.20 0.77 0.00 3.97 52.29
87 (Midazolam) 0.36 —0.02 2.00 3.70 43.34
88 (Verapamil) —0.70 —1.32 5.00 5.03 206.64
89 (Promazine) 1.23 0.78 0.00 4.63 90.27
90 (Chlorpromazine) 1.06 0.86 0.00 5.36 89.79
91 (Trifluorperazine) 1.44 0.70 0.00 5.11 164.67
92 (Thioridazine) 0.24 0.89 0.00 6.13 121.60
93 (BCNU) —0.52 —0.56 2.00 1.30 206.30
94 (Phenserine) 1.00 —0.23 2.00 291 118.21
95 (Physostigmine) 0.08 —0.50 2.00 0.99 148.62
96 (Terbutylchlorambucil) 1.00 0.28 1.00 4.93 174.18
97 (Didanosine) —1.30 —1.95 5.00 —0.92 198.99
98 (Zidovudine) —0.72 —2.37 6.00 —0.58 238.10
99 (Nevirapine) 0.00 —0.95 3.00 —0.31 103.95
100 (Sb-222 200) 0.30 0.19 2.00 5.89 60.72

2 The applied descriptors were the following, n,. ., 1S the number of solvated hydrogen-bond acceptors, log P is the calculated
octanol-water partition coefficient and 4, is the polar surface area. See text for further details.

® The structure and numbering of the molecules, corresponds to that in the reference (Luco, 1999).

¢ Experimental log BB values taken from the reference (Luco, 1999).

1995). Hence the experimental data is highly het- would not simply fit the model to errors in the
erogeneous and of fairly poor quality. With these experimental data.
errors in mind, it is questionable whether a model Similarly, the applied descriptors are also po-

with a significantly higher number of parameters tential sources of errors. Although the applied
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conformations are likely to be near the global
energy minimum, ideally the real conformational
equilibrium should have been characterized using
Boltzmann averaging. This could impact the cal-
culated polar surface area or the water accessible
surface area. The ACD log P values are obtained
from a fragmental approach. Due to the high
quality of the ACD model, it is likely to introduce
only small errors, although this may become an
issue with novel compound classes. It must be
noted, however, that when atom-based log P val-
ues (MOE, 1999) were used instead of the frag-
ment-based ones, the correlation coefficient of the
fit did not change substantially. Finally, the num-
ber of hydrogen bond acceptors can also be a
potential source of error, as partial hydrogen
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Fig. 1. Relationship between experimental and predicted
blood-brain partitioning, using the three-descriptor model de-
scribed in the text. Although the fit included all datapoints,
each potential outliner is shown with a line through it.

Table 4
Correlation matrix (r?) for the applied descriptors®

Log P Apol Mace,solv
log P 1.00
Apor 0.04 1.00
n 0.10 0.30 1.00

acc,solv

* The applied descriptors were the following, n,.. ., is the
number of solvated hydrogen-bond acceptors, logP is the
calculated octanol-water partition coefficient and A, is the
polar surface area. See text for further details.

bonding is not considered in the Patty rules (Bush
and Sheridan, 1993).

If the model in this work is used as a tool for
screening large virtual libraries, it may be useful
to define the point at which a molecule is accepted
or refused. It is important to note that this point
is completely arbitrary and has to be defined with
the intended application in mind. In this work,
the effect of choosing this cutoff limit at different
values was studied. If a cutoff of — 1 is selected
similarly to an earlier PLS model (Luco, 1999),
67% of the inactives and 85% of the actives are
predicted correctly in the test sets. Raising the
cutoff increases the reliability of the prediction of
inactives, whereas lowering it enhances the predic-
tion of actives. At a log BB value of — 0.5, for
example, 78% of the inactives and 73% of the
actives are predicted correctly. This effect is
clearly caused by molecules with a BBB penetra-
tion close to the cutoff falling into the wrong
group due to numerical inaccuracy (i.e. bin
boundary effects). For this reason, it may be best
to choose the cutoff with the specific pharmacol-
ogy in mind and set the cutoff value depending on
whether false positives or false negatives are more
harmful for the intended application.

It is quite interesting to look at the set of 100
molecules and see how well their diversity is rep-
resentative of molecules in a pharmaceutical set-
ting. This was achieved by using the MACCS
structural keys, as implemented in the Molecular
Operating Environment (MOE, 1999). These
MACCS keys contain information on the occur-
rences of small fragments in the molecules and
were recently shown to be superior to other de-
scriptors in capturing information on drug-size
molecules for receptor binding (Brown and Mar-
tin, 1997). The diversity of structures was assessed
by calculating the Tanimoto similarity coefficient
(Downs and Willett, 1995) between all pairs of
structures. The obtained unsorted similarity val-
ues, with the diagonal elements of the similarity
matrix (self-similarity) removed, were summed
and are shown in a histogram form in Fig. 2a.
For comparison, the distribution of molecules was
investigated in the Dictionary of Drugs (Elks and
Ganellin, 1990), which contains 18 222 drug
molecules. The cumulative normalized Tanimoto
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structural keys. These cumulative coefficients were obtained by
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e.g. bin | represents the range 0.0-0.1, bin 2 contains 0.1-0.2,
etc. (a) Molecules in this work (100 molecules). (b) Molecules
in the Dictionary of Drugs, containing 18222 molecules (Elks
and Ganellin, 1990).

coefficients for this database is displayed in Fig.
2b. A comparison of Fig. 2a and b reveals a
significant difference in the similarity distribu-
tions. The similarity indices of molecules in the
drug database are approximately normally dis-
tributed and the distribution peaks at bin 6 (Tan-
imoto similarity range of 0.5-0.6). The number of
very dissimilar molecules (bin 1-bin 3) is practi-
cally negligible. In contrast, similarity distribution
for the molecules in this study appears to be
skewed towards higher dissimilarity, although
there is a spurious peak in bin 7 (similarity range
0.6—0.7). Hence, on the basis of Fig. 2 we can
conclude that the molecules in this study were at
least as diverse as marketed drug molecules.

In summary, the need to include the number of
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solvated hydrogen-bond acceptors is a key finding
of this study. The simple three-descriptor model
developed in this work offers two significant ad-
vantages over previously developed models
(Norinder et al., 1998; Luco, 1999). Firstly, the
descriptors can be calculated easily and thus the
model is applicable for large sets of molecules.
Secondly, as can be seen from Fig. 1, a rapid
yes/no decision on BBB-penetration can be given
with reasonable certainty that could be useful for
scoring and prioritizing large combinatorial li-
braries or solutions from de novo methods.
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